Logistic regression is an algorithm used for binary classification use cases. More information about it can be found here. The below code snippet will help to create a logistic regression model.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
#### Create Loan Data for Classification in Python #### import pandas as pd import numpy as np ColumnNames=['CIBIL','AGE', 'SALARY', 'APPROVE_LOAN'] DataValues=[[480, 28, 610000, 'Yes'], [480, 42, 140000, 'No'], [480, 29, 420000, 'No'], [490, 30, 420000, 'No'], [500, 27, 420000, 'No'], [510, 34, 190000, 'No'], [550, 24, 330000, 'Yes'], [560, 34, 160000, 'Yes'], [560, 25, 300000, 'Yes'], [570, 34, 450000, 'Yes'], [590, 30, 140000, 'Yes'], [600, 33, 600000, 'Yes'], [600, 22, 400000, 'Yes'], [600, 25, 490000, 'Yes'], [610, 32, 120000, 'Yes'], [630, 29, 360000, 'Yes'], [630, 30, 480000, 'Yes'], [660, 29, 460000, 'Yes'], [700, 32, 470000, 'Yes'], [740, 28, 400000, 'Yes']] #Create the Data Frame LoanData=pd.DataFrame(data=DataValues,columns=ColumnNames) LoanData.head() #Separate Target Variable and Predictor Variables TargetVariable='APPROVE_LOAN' Predictors=['CIBIL','AGE', 'SALARY'] X=LoanData[Predictors].values y=LoanData[TargetVariable].values #Split the data into training and testing set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ############################################################ ###### Logistic Regression in Python ####### import pandas as pd from sklearn.linear_model import LogisticRegression #choose parameter Penalty='l1' or C=1 clf = LogisticRegression(C=1,penalty='l1') #Printing all the parameters of logistic regression print(clf) #Creating the model on Training Data LOG=clf.fit(X_train,y_train) prediction=LOG.predict(X_test) #Measuring accuracy on Testing Data from sklearn import metrics print(metrics.classification_report(y_test, prediction)) print(metrics.confusion_matrix(y_test, prediction)) #Printing some sample values of prediction TestingDataResults=pd.DataFrame(data=X_test, columns=Predictors) TestingDataResults['TargetColumn']=y_test TestingDataResults['Prediction']=prediction TestingDataResults.head() |
Author Details
Lead Data Scientist
Farukh is an innovator in solving industry problems using Artificial intelligence. His expertise is backed with 10 years of industry experience. Being a senior data scientist he is responsible for designing the AI/ML solution to provide maximum gains for the clients. As a thought leader, his focus is on solving the key business problems of the CPG Industry. He has worked across different domains like Telecom, Insurance, and Logistics. He has worked with global tech leaders including Infosys, IBM, and Persistent systems. His passion to teach inspired him to create this website!